added lots of comments; added some validation to config.h; improved adc-input: added min and max adc-values, added poti calibration, added adc-values to debug-output; added support for a second button connected to adc2; added INVERT_R_DIRECTION and INVERT_L_DIRECTION; updated readme
//#define CONTROL_PPM // use PPM-Sum as input. disable DEBUG_SERIAL_USART2!
//#define PPM_NUM_CHANNELS 6 // total number of PPM channels to receive, even if they are not used.
// ###### CONTROL VIA TWO POTENTIOMETERS ######
// #define CONTROL_ADC
// ADC-calibration to cover the full poti-range: connect potis to left sensor board cable (0 to 3.3V), watch UART on the right sensor board cable. the first 2 values are ADC1 and ADC2. write minimum and maximum poti position-values to ADC?_MIN and ADC?_MAX.
//#define CONTROL_ADC // use ADC as input. disable DEBUG_SERIAL_USART2!
//#define ADC1_MIN 0 // min ADC1-value while poti at minimum-position (0 - 4095)
//#define ADC1_MAX 4095 // max ADC1-value while poti at maximum-position (0 - 4095)
//#define ADC2_MIN 0 // min ADC2-value while poti at minimum-position (0 - 4095)
//#define ADC2_MAX 4095 // max ADC2-value while poti at maximum-position (0 - 4095)
// ###### CONTROL VIA NINTENDO NUNCHUCK ######
#define CONTROL_NUNCHUCK
// left sensor board cable. keep cable short, use shielded cable, use ferrits, stabalize voltage in nunchuck, use the right one of the 2 types of nunchucks, add i2c pullups.
#define CONTROL_NUNCHUCK // use nunchuck as input. disable DEBUG_SERIAL_USART3!
#if defined DEBUG_SERIAL_USART2 && defined CONTROL_ADC
#error CONTROL_ADC and DEBUG_SERIAL_USART2 not allowed. use DEBUG_SERIAL_USART3 instead.
#endif
#if defined DEBUG_SERIAL_USART2 && defined CONTROL_PPM
#error CONTROL_PPM and DEBUG_SERIAL_USART2 not allowed. use DEBUG_SERIAL_USART3 instead.
#endif
#if defined DEBUG_SERIAL_USART3 && defined CONTROL_NUNCHUCK
#error CONTROL_NUNCHUCK and DEBUG_SERIAL_USART3 not allowed. use DEBUG_SERIAL_USART2 instead.
#endif
#if defined CONTROL_PPM && defined CONTROL_ADC && defined CONTROL_NUNCHUCK || defined CONTROL_PPM && defined CONTROL_ADC || defined CONTROL_ADC && defined CONTROL_NUNCHUCK || defined CONTROL_PPM && defined CONTROL_NUNCHUCK
#error only 1 input method allowed. use CONTROL_PPM or CONTROL_ADC or CONTROL_NUNCHUCK.
To build the firmware, just type "make". Make sure you have specified your gcc-arm-none-eabi binary location in the Makefile. Right to the STM32, there is a debugging header with GND, 3V3, SWDIO and SWCLK. Connect these to your SWD programmer, like the ST-Link found on many STM devboards.
To build the firmware, just type "make". Make sure you have specified your gcc-arm-none-eabi binary location in the Makefile ("PREFIX = ..."). Right to the STM32, there is a debugging header with GND, 3V3, SWDIO and SWCLK. Connect GND, SWDIO and SWCLK to your SWD programmer, like the ST-Link found on many STM devboards.
Make sure you hold the powerbutton or connect a jumper to the power button pins while flashing the firmware, as the STM might release the power latch and switches itself off during flashing.
Make sure you hold the powerbutton or connect a jumper to the power button pins while flashing the firmware, as the STM might release the power latch and switches itself off during flashing. Battery > 36V have to be connected while flashing.
To flash the STM32, use the ST-Flash utility (https://github.com/texane/stlink).
First, check that power is connected and voltage is >36V.
First, check that power is connected and voltage is >36V while flashing.
If the board draws more than 100mA in idle, it's probably broken.
If the motors do something, but don't rotate smooth and quietly, try to use an alternative phase mapping. Usually, color-correct mapping (blue to blue, green to green, yellow to yellow) works fine. However, some hoverboards have a different layout then others, and this might be the reason your motor isn't spinning.
Nunchuck not working: Use the right one of the 2 types of nunchucks. Use i2c pullups.
Nunchuck or PPM working bad: The i2c bus and PPM signal are very sensitive to emv distortions of the motor controller. They get stronger the faster you are. Keep cables short, use shielded cable, use ferrits, stabalize voltage in nunchuck or reviever, add i2c pullups. To many errors leads to very high accelerations which triggers the protection board within the battery to shut everything down.
Most robust way for input is to use the ADC and potis. It works well even on 1m unshielded cable. Solder ~100k Ohm resistors between ADC-inputs and gnd directly on the mainboard. Use potis as pullups to 3.3V.
---
#### Examples
Have a look at the config.h in the Inc directory. That's where you configure to firmware to match your project.
Currently supported: Wii Nunchuck, analog potentiometer and PPM signal from a RC remote.
Currently supported: Wii Nunchuck, analog potentiometer and PPM-Sum signal from a RC remote.
If you need additional features like a boost button, have a look at the while(1) loop in the main.c