Most robust way for input is to use the ADC and potis. It works well even on 1m unshielded cable. Solder ~100k Ohm resistors between ADC-inputs and gnd directly on the mainboard. Use potis as pullups to 3.3V.
Most robust way for input is to use the ADC and potis. It works well even on 1m unshielded cable. Solder ~100k Ohm resistors between ADC-inputs and gnd directly on the mainboard. Use potis as pullups to 3.3V.
---
## Diagnostics
The errors reported by the board are in the form of audible beeps:
- **1 beep (low pitch)**: Motor error (see [possible causes](https://github.com/EmanuelFeru/bldc-motor-control-FOC#diagnostics))
- **2 beeps (low pitch)**: ADC timeout
- **3 beeps (low pitch)**: Serial communication timeout
- **4 beeps (low pitch)**: General timeout (PPM, PWM, Nunchuck)
- **5 beeps (low pitch)**: Mainboard temperature warning
- **1 beep slow (medium pitch)**: Low battery voltage <36V
- **1 beep fast (medium pitch)**: Low battery voltage <35V
- **1 beep fast (high pitch)**: Backward spinning motors
For a more detailed troubleshooting connect an [FTDI Serial adapter](https://s.click.aliexpress.com/e/_AqPOBr) to the DEBUG_SERIAL cable (Left or Right) and monitor the output data using the [Hoverboard Web Serial Control](https://candas1.github.io/Hoverboard-Web-Serial-Control/) tool developed by [Candas](https://github.com/Candas1/).
- **[Candas](https://github.com/Candas1/) Hoverboard Web Serial Control:** [https://candas1.github.io/Hoverboard-Web-Serial-Control/](https://candas1.github.io/Hoverboard-Web-Serial-Control/)