#define BAT_FILT_COEF 655 // battery voltage filter coefficient in fixed-point. coef_fixedPoint = coef_floatingPoint * 2^16. In this case 655 = 0.01 * 2^16
#define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). In this case 43.00 V * 100 = 4300
#define BAT_CALIB_REAL_VOLTAGE 3970 // input voltage measured by multimeter (multiplied by 100). For example 43.00 V * 100 = 4300
#define BAT_CALIB_ADC 1492 // adc-value measured by mainboard (value nr 5 on UART debug output)
#define BAT_CELLS 10 // battery number of cells. Normal Hoverboard battery: 10s
@ -133,18 +134,18 @@
// #define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used!
#endif
#ifdef VARIANT_IBUS
// ###### CONTROL VIA RC REMOTE WITH FLYSKY IBUS PROTOCOL ######
@ -156,10 +156,11 @@ Most robust way for input is to use the ADC and potis. It works well even on 1m
This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) and / or [/Inc/config.h](/Inc/config.h)):
- **VARIANT_ADC**: In this variant the motors are controlled by two potentiometers connected to the Left sensor cable (long wired)
- **VARIANT_USART3**: In this variant the motors are controlled via serial protocol on USART3 right sensor cable (short wired). The commands can be sent from an Arduino. Check out the [hoverserial.ino](/02_Arduino/hoverserial) as an example sketch.
- **VARIANT_NUNCHUCK**: Wii Nunchuck offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates.
- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum signal
- **VARIANT_IBUS**: This is when you want to use a RC remote control with Flysky IBUS protocol connected to the Left sensor cable.
- **VARIANT_HOVERCAR**: In this variant the motors are controlled by two pedals brake and throttle. Reverse is engaged by double tapping on the brake pedal at standstill.
- **VARIANT_TRANSPOTTER**: This build is for transpotter which is a hoverboard based transportation system. For more details on how to build it check [here](https://github.com/NiklasFauth/hoverboard-firmware-hack/wiki/Build-Instruction:-TranspOtter) and [here](https://hackaday.io/project/161891-transpotter-ng).
- **VARIANT_NUNCHUCK**: Wii Nunchuck offers one hand control for throttle, braking and steering. This was one of the first input device used for electric armchairs or bottle crates.
- **VARIANT_PPM**: This is when you want to use a RC remote control with PPM Sum singnal
Of course the firmware can be further customized for other needs or projects.